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Abstract

Results are presented for the numerical simulation of vortex-induced vibrations (VIVs) of a cylinder at low Reynolds

numbers (Re). A stabilized space–time finite-element formulation is utilized to solve the incompressible flow equations

in primitive variables. The cylinder, of low nondimensional mass (m� ¼ 10), is free to vibrate in, both, the transverse

and in-line directions. To investigate the effect of Re and reduced natural frequency, Fn, two sets of computations are

carried out. In the first set of computations the Reynolds number is fixed (¼ 100) and the reduced velocity (U� ¼ 1=Fn)

is varied. Hysteresis, in the response of the cylinder, is observed at the low- as well as high-end of the range of reduced

velocity for synchronization/lock-in. In the second set of computations, the effect of Reynolds number (50pRep500) is
investigated for a fixed reduced velocity (U� ¼ 4:92). The effect of the Reynolds number is found to be very significant
for VIVs. While the vortex-shedding mode at low Re is 2S (two single vortices shed per cycle), at Re�300 and larger, the

Pþ S mode of vortex shedding (a single vortex and one pair of counter-rotating vortices are released in each cycle of

shedding) is observed. This is the first time that the Pþ S mode has been observed for a cylinder undergoing free

vibrations. This change of vortex-shedding mode is hysteretic in nature and results in a very large increase in the

amplitude of in-line oscillations. Since the flow ceases to remain two-dimensional beyond Re�200, it remains to be seen

whether the Pþ S mode of shedding can actually be observed in reality for free vibrations.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The flow past a stationary circular cylinder becomes unstable beyond Re�47 (Williamson, 1996) and vortex-shedding

ensues. As a result, the cylinder experiences unsteady aerodynamic forces that may lead to vortex-induced vibrations

(VIV). It is well known that the motion of the cylinder can alter the flow-field significantly. Under certain conditions,

the motion can cause the vortex-shedding frequency to match the vibration frequency. This is referred to as lock-in or

synchronization. In addition, near the low- and high-end of the lock-in regime, the flow and cylinder response may

exhibit hysteresis. Significant research has contributed to the understanding of various phenomena associated with VIV.

For a comprehensive review of the research, on various aspects of VIV, the reader is referred to a recent article by

Williamson and Govardhan (2004).
e front matter r 2005 Elsevier Ltd. All rights reserved.
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Khalak and Williamson (1999) carried out VIV experiments using a setup with low mass–damping (m�z, where m� is

the nondimensional mass and z is the damping ratio). They found that, depending on the value of m�z, the response of
the system is one of the two types. For low mass–damping, the response consists of three branches: an initial excitation

branch, and upper and lower branches. The mode transition between the initial and upper branches is hysteretic, while

that between the upper and lower branches is associated with intermittent switching of phase. With the help of flow

visualization they found that the initial branch is associated with the 2S mode of shedding (Williamson and Roshko,

1988) while the lower branch corresponds with the 2P mode. In the 2S mode of shedding (the classic Karman street),

two single vortices per cycle are released from the cylinder. In the 2P mode, two vortex pairs are formed and released

during each cycle of vortex shedding. Hysteresis with respect to the transition between the initial excitation and upper

branches is observed for a range of reduced velocity (U� ¼ 4:4524:70). The reduced velocity, U� is defined as U1=fD,

where U1 is the free-stream speed, D is the diameter of the cylinder and f is the vibrating frequency of the body. For

high values of m�z, only two response branches exist.
Brika and Laneville (1993) conducted VIV experiments for a long flexible cylinder with low mass–damping. They

observed that the transverse displacement of the cylinder is hysteretic with the variation of flow-velocity. The velocity of

the flow was varied in two ways: progressive and impulsive. Two branches of cylinder response exist. The upper and

lower branches of the cylinder response are associated with different modes of vortex shedding. The upper branch is

realized when the velocity is increased in a progressive way with small increments. In this case the 2S mode of vortex

shedding is observed. The lower branch is obtained when the velocity is either decreased in progressive manner or

changed impulsively. This branch is associated with the 2P vortex-shedding mode as suggested by Williamson and

Roshko (1988) via their experiments for forced oscillation of a cylinder.

Mittal and Tezduyar (1992) carried out VIV studies for a cylinder, restricted to transverse oscillation, using a finite

element method for 290pRep360. They observed the phenomena of hysteresis and lock-in in their simulations. For a

certain range of Reynolds number, a low- or high-vibration amplitude solution can be realized depending upon the

initial condition. They showed, using data for forced oscillations from Koopmann (1967), that the hysteresis, observed

in their computations, is a consequence of lock-in. In the context of forced oscillations, it is known that lock-in occurs

only if the vibration amplitude of the cylinder is greater than a certain threshold value (Koopmann, 1967). For a certain

range of Reynolds number, if the initial condition corresponds to a cylinder vibrating with large amplitude that is

beyond the threshold value for lock-in, the vortex-shedding frequency locks-in to the structural frequency and one

realizes a high-amplitude solution. On the other hand, if one begins with a solution that corresponds to low-amplitude

oscillations, that is below the threshold required for lock-in, a low-amplitude solution is realized.

Mittal and Kumar (1999) studied VIV of a cylinder with, both, in-line and transverse oscillations at Re ¼ 325.

Computations were carried out for various values of the reduced natural frequency (Fn ¼ f nD=U1, where f n is the

natural frequency of the system). Lock-in is observed for a range of values of Fn. Over a certain range of structural

frequency, the vortex-shedding frequency of the oscillating cylinder does not match Fn exactly; there is a slight detuning.

This phenomenon is referred to as soft-lock-in. It was shown that this detuning disappears when the mass of the cylinder

is significantly larger than the mass of the surrounding fluid it displaces. It has also been pointed out by Khalak and

Williamson (1999) that, for low m�, synchronization is defined by the matching of the vortex-shedding and cylinder

vibration frequencies. In general, at synchronization, the vortex-shedding frequency can be quite different than the

natural frequency.

Blackburn and Henderson (1996) presented numerical results for forced and free vibrations of a cylinder at Re ¼ 250.

For free vibrations, lock-in is observed for a range of natural frequencies. A chaotic cylinder response is also seen for

certain frequencies. With forced vibrations of the cylinder, they observed the P+S mode of shedding for Re ¼ 140 with

oscillation amplitude of 0:75D and higher.

Guilmineau and Queutey (2001) simulated the VIV of an elastically mounted rigid cylinder with low mass–damping.

The cylinder was restricted to oscillate only in the direction transverse to the flow. The Reynolds number was varied

from 900 to 15 000 and the corresponding reduced velocity, U�, between 1:0 and 17:0. To account for the turbulence at
large Re, Large Eddy Simulation was employed using the SST K–o model of Menter. The nondimensional mass and
damping for the system correspond to m� ¼ 2:4 and m�z ¼ 0:013. Computations were carried out using three sets of
initial conditions: (a) from rest, (b) increasing velocity and (c) decreasing velocity. Small increments of the reduced

velocity (U�) were used to conduct the studies with increasing and decreasing velocity. The response of the vibrating

cylinder was found to depend on the initial conditions. Only the lower branch was predicted with the from rest and

decreasing velocity initial conditions. With the increasing velocity initial condition, the maximum amplitude

corresponds to the value obtained experimentally, but the upper branch does not match experimental results.

Jauvtis and Williamson (2003) studied the behavior of an elastically mounted cylinder with, both, streamwise and

transverse motions. The range of values of m� in their study is 5–25. The system has the same natural frequency

(f N ¼ 0:4Hz) in both the directions. It was found that the freedom of the body to oscillate in both the directions has
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very little effect on the transverse response of the system and the vortex wake dynamics. Compared to the transverse-

only motion, the peak of the upper branch of the transverse motion for the case where both motions are allowed

increases by 10%.

Williamson and Govardhan (2004) compiled data from various researchers for VIV in the laminar vortex-shedding

range and demonstrated that the hysteresis at the low-velocity end of the synchronization regime may exist. The

maximum amplitude for transverse oscillations at low Re, in the laminar vortex-shedding range, is significantly smaller

than that observed at large Re. Anagnostopoulos and Bearman (1992) conducted free-vibration experiments for

Re ¼ 902150. There is good agreement between the amplitudes from their experiments and those from the two-

dimensional simulations by various researchers for Re ¼ 1002200.

In this paper, we present our results for VIV of a cylinder at low Reynolds numbers. The oscillator system has very

low nondimensional mass (m� ¼ 10) and the structural damping coefficient is assigned a zero value. The cylinder is

allowed to vibrate in, both, transverse and in-line directions. Typical experiments in a laboratory setup are conducted

for an oscillator, of given mass and spring-stiffness, by varying the flow speed. In such a scenario, it can be seen that, the

reduced natural frequency, Fn ¼ 1=U�, varies inversely with Re. To investigate the effect of Re and Fn on the oscillator,

independently, two sets of computations are carried out. In the first set of computations the Reynolds number is fixed

(¼ 100) and the reduced velocity (U�) is varied. For a range of values of U�, lock-in takes place. Hysteresis is observed

at the low- as well as high-velocity end of the synchronization regime. Maximum amplitude of transverse oscillations is

seen for U��4:75. In the second set of computations, the reduced velocity of the system is fixed at U� ¼ 4:92 and the
effect of Reynolds number (50pRep500) is investigated. Hysteresis, with respect to increasing and decreasing the
Reynolds number, is seen again at the low-Re end of the lock-in regime. In addition, a hysteretic jump in the mode of

vortex shedding is observed at Re�300.
2. The governing equations

2.1. The incompressible flow equations

Let Ot � Rnsd and ð0;TÞ be the spatial and temporal domains, respectively, where nsd is the number of space

dimensions, and let Gt denote the boundary of Ot. The spatial and temporal coordinates are denoted by x and t. The

Navier–Stokes equations governing incompressible fluid flow are

r
qu
qt

þ u 	 =u
 f

� �

 = 	 r ¼ 0 on Ot for ð0;TÞ, (1)

= 	 u ¼ 0 on Ot for ð0;TÞ. (2)

Here r, u, f and r are the density, velocity, body force and the stress tensor, respectively. The stress tensor is written as
the sum of its isotropic and deviatoric parts

r ¼ 
pIþ T; T ¼ 2meðuÞ; eðuÞ ¼ 1
2
ðð=uÞ þ ð=uÞTÞ, (3)

where p and m are the pressure and dynamic viscosity, respectively. Both the Dirichlet and Neumann-type boundary
conditions are accounted for, represented as

u ¼ g on ðGtÞg; n 	 r ¼ h on ðGtÞh, (4)

where ðGtÞg and ðGtÞh are complementary subsets of the boundary Gt and n is its unit normal vector. The initial

condition on the velocity is specified on Ot at t ¼ 0:

uðx; 0Þ ¼ u0 on O0, (5)

where u0 is divergence free.

2.2. The equations of motion for a rigid body

A solid body immersed in the fluid experiences unsteady forces and in certain cases may exhibit rigid body motion.

The motion of the body, in the two directions along the Cartesian axes, is governed by the following equations:

€X þ 4pFnz _X þ ð2pFnÞ
2X ¼

2CD

pm�
for ð0;TÞ, (6)
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€Y þ 4pFnz _Y þ ð2pFnÞ
2Y ¼

2CL

pm�
for ð0;TÞ. (7)

Here, Fn is the reduced natural frequency of the oscillator, z the structural damping ratio, m� the nondimensional mass

of the body while CL and CD are the instantaneous lift and drag coefficients for the body, respectively. The free-stream

flow is assumed to be along the x-axis. €X , _X and X denote the normalized in-line acceleration, velocity and

displacement of the body, respectively, while €Y , _Y and Y represent the same quantities associated with the cross-flow

motion. In the present study, in which the rigid body is a circular cylinder, the displacement and velocity are normalized

by the diameter, D, of the cylinder and the free-stream speed, U1, respectively. The reduced natural frequency of the

system, Fn is defined as f nD=U1, where f n is the natural frequency of the oscillator. Another related parameter is the

reduced velocity, U�. It is defined as U� ¼ U1=f nD ¼ 1=Fn.

The nondimensional mass of the cylinder is defined as m� ¼ 4m=pr1D2, where m is the actual mass of the oscillator

per unit length and r1 is the density of the fluid. The force coefficients are computed by carrying an integration, that
involves the pressure and viscous stresses, around the circumference of the cylinder:

CD ¼
1

1
2
r1U2

1D

Z
Gcyl

ðrnÞ 	 nx dG (8)

CL ¼
1

1
2 r1U2

1D

Z
Gcyl

ðrnÞ 	 ny dG. (9)

Here nx and ny are the cartesian components of the unit vector n that is normal to the cylinder boundary Gcyl.
3. The finite-element formulation

To accommodate the motion of the cylinder and the deformation of the mesh, a formulation that can handle moving

boundaries and interfaces is employed. In order to construct the finite-element function spaces for the space–time

method, we partition the time interval ð0;TÞ into subintervals In ¼ ðtn; tnþ1Þ, where tn and tnþ1 belong to an ordered

series of time levels: 0 ¼ t0ot1o 	 	 	otN ¼ T . Let On ¼ Otn and Gn ¼ Gtn . We define the space–time slab Qn as the

domain enclosed by the surfaces On, Onþ1, and Pn, where Pn is the surface described by the boundary Gt as t traverses In.

As is the case with Gt, the surface Pn is decomposed into ðPnÞg and ðPnÞh with respect to the type of boundary condition

(Dirichlet or Neumann) being imposed. For each space–time slab we define the corresponding finite-element function

spaces: ðSh
uÞn, ðV

h
uÞn, ðS

h
pÞn, and ðV

h
pÞn. Over the element domain, this space is formed by using first-order polynomials

in space and time. Globally, the interpolation functions are continuous in space but discontinuous in time.

The stabilized space–time formulation for deforming domains is then written as follows: given ðuhÞn
 , find u
h 2 ðSh

uÞn
and ph 2 ðSh

pÞn, such that 8w
h 2 ðVh

uÞn, qh 2 ðVh
pÞn,

Z
Qn

wh 	 r
quh

qt
þ uh 	 =uh 
 f

� �
dOþ

Z
Qn

eðwhÞ : rðph; uhÞdQ þ

Z
Qn

qh= 	 uh dQ

þ
Xnel

e¼1

Z
Qe

n

1

r
t r

qwh

qt
þ uh 	 =wh

� �

 = 	 rðqh;whÞ

� �

	 r
quh

qt
þ uh 	 =uh 
 f

� �

 = 	 rðph; uhÞ

� �
dQ

þ
Xnel

e¼1

Z
Qe

n

d= 	 whr= 	 uh dQ þ

Z
On

ðwhÞ
þ
n :rððu

hÞ
þ
n 
 ðuhÞ



n ÞdO

¼

Z
ðPnÞh

wh 	 hh dP. ð10Þ

This process is applied sequentially to all the space–time slabs Q0;Q1; . . . ;QN
1. In the variational formulation given by

Eq. (10), the following notation is being used:

ðuhÞ

n ¼ lim

e!0
uðtn  eÞ, (11)
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Z
Qn

ð. . .ÞdQ ¼

Z
In

Z
On

ð. . .ÞdOdt, (12)

Z
Pn

ð. . .ÞdP ¼

Z
In

Z
Gn

ð. . .ÞdGdt. (13)

The computations start with

ðuhÞ


0 ¼ u0, (14)

where u0 is divergence free.

The variational formulation given by Eq. (10), includes certain stabilization terms added to the basic Galerkin

formulation to enhance its numerical stability. Details on the formulation, including the definitions of the coefficients t
and d, can be found in the papers by Tezduyar et al. (1992a–c).
The equations of motion for the oscillator given by Eq. (6)–(7) are also cast in the space–time formulation in the same

manner as described in the work by Tezduyar et al. (1992b) and Mittal (1992).
4. Problem description

The cylinder, mounted on elastic supports, is allowed to vibrate, both, in the streamwise and transverse directions.

The nondimensional mass of the cylinder is m� ¼ 10:0. To encourage high-amplitude oscillations, the structural
damping coefficient is set to zero. The Reynolds number, Re, is based on the free-stream speed, diameter of the cylinder

and viscosity of the fluid. The springs in, both, the transverse and in-line directions are assumed to be linear and with

same stiffness.

It is interesting to note that the reduced natural frequency, Fn (¼ 1=U�), that appears in Eqs. (6) and (7), for a given

spring–mass system varies inversely with Re. In that sense, for a certain spring–mass system, Fn and Re are not

independent parameters. However, it would be useful to study their effect on VIV by varying them independently. This

can certainly be done in the framework of numerical simulations. To this extent, in the present work, two sets of

computations are carried out. In the first set of computations, the Reynolds number is set to 100 and the reduced

velocity, U�, is varied. The maximum amplitude for transverse oscillations are observed for U��4:75. The second set of
computations are carried out with the objective of investigating the effect of Reynolds number when the cylinder

vibrates at, approximately, its maximum amplitude. Therefore, in the second set of computations, the reduced velocity

of the system is fixed at U� ¼ 4:92 while the Reynolds number is varied.
4.1. Boundary conditions

No slip condition is applied for the velocity at the cylinder boundary. The flow velocity on the cylinder surface and

the location of the cylinder are updated at each nonlinear interaction by solving the of motion for the oscillator. Free-

stream values are assigned for the velocity at the upstream boundary and the viscous stress vector is equal to zero at the

downstream boundary. On the upper and lower boundaries, the component of velocity normal to and the component of

stress vector along these boundaries are prescribed zero value.
4.2. Finite-element mesh and the mesh moving scheme

The finite-element mesh, utilized for many of the computations in this paper, is shown in Fig. 1. It consists of 7437

nodes and 7236 quadrilateral, four-noded elements. We refer to this mesh as Mesh M7k. The cylinder resides in a

rectangular computational domain whose upstream and downstream boundaries are located at 10 and 25.5 cylinder

diameters from the center of the cylinder, respectively. The upper and lower boundaries are placed at 10 diameters from

the center of the cylinder.

The mesh moving scheme has been designed such that the mesh in the square box around the cylinder moves along

with it as a rigid body. The location of the outer boundary is fixed. As a result, the movement of the cylinder causes

deformation of the mesh points lying between the square region and the outer boundary. This kind of a mesh movement

is expected to lead to almost no projection errors in the flow close to the cylinder. The issue of adequacy of the spatial

resolution of this mesh is addressed via comparison of results for different resolutions, later in the article. It was also
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studied in one of our earlier papers (Mittal and Kumar, 1999). A time step size of 0:0625 is employed for the present
computations.
5. Results

Equal-in-order basis functions for velocity and pressure, that are bilinear in space and linear in time, are used and

2� 2� 2 Gaussian quadrature is employed for numerical integration. The nonlinear equation systems resulting from

the finite-element discretization of the flow equations are solved using the Generalized Minimal RESidual (GMRES)

technique in conjunction with diagonal preconditioners.

In all the figures for the vorticity field, presented in this article, a gray scale, based on the magnitude of the vorticity, is

used for shading. The darker shades of gray represents higher value of vorticity. To differentiate between the positive

and negative values, iso-vorticity contours are also shown. Black colored contour lines represent negative, while the

white colored lines show positive values of the vorticity field.

5.1. Re ¼ 100, flow past a stationary cylinder

Computations for a stationary cylinder at Re ¼ 100 are carried out till the flow reaches a temporally periodic

solution. The value of Strouhal number (St), mean drag coefficient, CD and r.m.s. value of the lift coefficient, CLr:m:s:

obtained are 0.163, 1.31 and 0.25, respectively. The values obtained for a more refined mesh (Mesh M18k) with 18 220

nodes and 17 904 elements, are 0.166, 1.35 and 0.25, respectively. The experimental value of St reported by Williamson

(1989) is 0.1648 for parallel shedding, while Kravchenko et al. (1999) and Persillon and Braza (1998) have reported

St ¼ 0:164 from their simulations. CD from present computation compares quite well with the value reported by

Henderson (1995) (¼ 1:35). This shows that the mesh with 7437 nodes gives reasonably accurate solutions, at least for
flow past a stationary cylinder. A similar study for a vibrating cylinder is presented in a later section.

5.2. Vortex-induced vibrations: Re ¼ 100, variation with U�

5.2.1. Overview of the cylinder response

Figs. 2–5 show the variation of displacement of the cylinder and aerodynamic coefficients with U�. The amplitude of

transverse vibrations is significantly higher than those of the in-line oscillations. The peak amplitude of vibration is,
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Fig. 3. Vortex-induced vibrations at Re ¼ 100: variation of the r.m.s. value of in-line displacement of the cylinder with reduced

velocity, U� & U�St. Here, St is the Strouhal number for the stationary cylinder at Re ¼ 100.
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Fig. 2. Vortex-induced vibrations at Re ¼ 100: variation of the maximum transverse displacement of the cylinder with reduced

velocity, U� & U�St. Here, St is the Strouhal number for the stationary cylinder at Re ¼ 100.
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0:6D, approximately and is achieved for U�St�0:78 (where, St is the Strouhal number for the stationary cylinder at
Re ¼ 100). The response of the cylinder transverse to the flow direction is very similar to that reported by other

researchers, for low Re flow, as summarized by Williamson and Govardhan (2004). However, there are a few

differences. The present computations result in a hysteretic behavior at, both, the lower and higher range of flow

synchronization. Here, we wish to point out that to avoid clutter in the figures, only that data, corresponding to

decreasing U�, has been shown that is necessary to point out the hysteresis in the cylinder response and flow. The close-

up views in the insets of Figs. 2 and 3 show the details of the hysteresis in the lower range of U�. Two hysteretic loops

can be clearly seen in these figures. It has been pointed out by Brika and Laneville (1993) that the cylinder response is

quite sensitive to the increments in reduced velocity, DU�. Keeping that in mind, computations for 4oU�o4:7 have
been carried out with increments of DU� ¼ 0:02.
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Fig. 5. Vortex-induced vibrations at Re ¼ 100: variation of the r.m.s. value of drag coefficient with reduced velocity, U�.
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The r.m.s. values of the lift and drag coefficients for the vibrating cylinders also show hysteretic jumps. As a result of

vibrations, compared to a stationary cylinder, the r.m.s. value of the force coefficients is quite high for certain values of

U�. In addition, modulation (beating) is observed in the time histories of the force coefficients. The response of the

cylinder appears to be associated with another peak at U��8:3. The amplitude of the in-line oscillations for the second
peak are slightly larger than that for the first peak at U��4:6. It is interesting to note that although the amplitude of in-
line oscillations is larger for the second peak, the unsteady component of the drag coefficient is significantly larger for

the first peak. In general, the vibration of the cylinder results in a large increase in unsteady component of the drag

coefficient.

Fig. 6 shows the variation of the reduced frequency of transverse oscillations of the cylinder with U�. Also shown in

the same figure is the reduced natural frequency, Fn ¼ 1=U�. The broad range of synchronization/lock-in for

4:6oU�o8:2, approximately, is quite apparent from this figure. Our computations indicate that the vortex-shedding
frequency is quite close to the cylinder vibration frequency. In this range of reduced velocity, the vibrations of the

cylinder cause the vortex-shedding frequency to assume the same value as the natural frequency of the spring–mass
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reduced velocity, U�. Also shown is the reduced natural frequency, F n ¼ 1=U�.
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system. Two hysteretic loops at the lower end of synchronization velocity (4:42XU�
X4:48 and 4:58XU�

X4:68) and
one at the higher end (8:1XU�

X8:3) are clearly observed in Fig. 6. Beyond the range of U� for lock-in, the vortex-

shedding frequency moves back to that for a stationary cylinder (�0:163).
5.2.2. Hysteresis and modes of vortex shedding

Fig. 7 shows the instantaneous vorticity fields for various U�. In all the cases the 2S mode of vortex shedding, as

described by Williamson and Roshko (1988), is observed. In this mode of shedding, during each vortex-shedding

cycle, a single vortex is alternately shed from each side of the cylinder. For those values of U�, where the

cylinder executes high-amplitude transverse vibrations (for example, U� ¼ 5), the vortices in the wake coalesce giving

rise to the C(2S) mode of vortex shedding. The two solutions at U� ¼ 4:6, for increasing and decreasing
reduced velocity, are also shown in Fig. 7. As expected, the flow for the case with high-amplitude oscillations is very

similar to that for U� ¼ 5:0 while the one with lower amplitude vibrations, or increasing U�, resembles the flow for a

stationary cylinder. The time histories of the aerodynamic coefficients and the cylinder response are shown in Figs. 8

and 9.

For increasing U� (or decreasing Fn), in the range of synchronization, the reduction in the vortex-shedding frequency

can be observed from Fig. 7 from the increased longitudinal spacing between the vortices. U� ¼ 8:22 lies at the
far end of the synchronization regime. At this value of reduced velocity the vortex-shedding frequency for the vibrating

cylinder switches between the natural frequency of the oscillator and the vortex-shedding frequency for the stationary

cylinder.
5.2.3. Are the in-line oscillations responsible for the hysteretic behavior at high U�?

The peak at U��8:3 in the response of the cylinder in in-line and transverse directions and their hysteretic
behavior has not been observed by earlier investigators. However, most efforts have been for a cylinder restricted to

transverse oscillations. Therefore, one is tempted to attribute this behavior to in-line oscillations. To address

this issue, two sets of computations were carried out. The fully developed unsteady solutions for U� ¼ 8:20
corresponding to increasing and decreasing reduced velocity are utilized as initial conditions to compute flow past a

cylinder restricted to vibrate (a) in in-line direction only and (b) in transverse direction only. It is observed that

when the cylinder is restricted to in-line vibrations, both the initial conditions lead to a low-amplitude solution. The

fully developed unsteady flow is very similar to that for a stationary cylinder. On the other hand, in the case

where the cylinder is allowed to vibrate in the transverse direction only, the hysteretic behavior persists. The

solutions obtained in this case are very similar to those seen for a cylinder that is free to vibrate in both in-line and

transverse oscillations. This suggests that it is not the in-line oscillations that cause the hysteretic behavior of the
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flow at the end of synchronization range of U�. This is consistent with the observation made by Jauvtis and

Williamson (2003) that, for m�45, the freedom to oscillate in-line with the flow has very little effect on the transverse
vibrations.
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5.3. Vortex induced vibrations: U� ¼ 4:92, variation with Re

To investigate the effect of Re on VIV, computations are carried out for various values of Re while the reduced

velocity is fixed at U� ¼ 4:92. At this value of U� ¼ 4:92, the cylinder vibrates at close to maximum amplitude observed
for Re ¼ 100. It is expected to do so for other Re, as well. It is also beyond the range of reduced velocity at which the

hysteretic behavior is observed for Re ¼ 100.

5.3.1. Mesh convergence study

To investigate the adequacy of the spatial resolution, for the flow past an oscillating cylinder, two meshes: M7k and

M18k are employed for the Re ¼ 100 flow. It was shown earlier, in the paper, that the two meshes result in very similar

results for the flow past a stationary cylinder. MeshM7k is shown in Fig. 1. MeshM18k is more refined and consists of

18 220 nodes. The domain size for the two meshes is identical. At Re ¼ 100, the cylinder executes high amplitude
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vibrations and, therefore, this is a good test case for checking the adequacy of spatial resolution. The summary of the

response of the cylinder and the aerodynamic coefficients is shown in Table 1. As was the case with flow past a

stationary cylinder, the two meshes result in very similar results. Interestingly, even though the cylinder response

predicted from the two meshes are virtually the same, there is a difference of, approximately, 3% between the amplitude

of lift coefficients. Overall, the agreement is good and this establishes the adequacy of the mesh M7k for the present

computations.

5.3.2. Overview of the cylinder response

Figs. 10 and 11 show the variation, with Re, of the amplitude of maximum transverse and in-line displacements.

Results are presented for Reynolds number between 50 to 500. It is well known that the flow past a cylinder, beyond

Re�200 is associated with three-dimensional effects. In that sense, two-dimensional computations are not expected to

give accurate results. However, the objective of the present computations is to study the effect of Re, at a fixed U�. In

particular, we wish to investigate the effect of Re on the modes of vortex shedding for the freely vibrating cylinder.
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Table 1

Vortex-induced vibrations for U� ¼ 4:92 and Re ¼ 100: summary of the aerodynamic coefficients and response of the cylinder for two
different finite-element meshes.

Mesh Nodes Elements St ðY
D
Þmax ðX

D
Þr:m:s: ðX

D
Þ CLmax CDmax CDr:m:s: CD

M7k 7437 7236 0.201 0.57 0.01 0.09 0.96 3.01 0.42 2.39

M18k 18 220 17 904 0.200 0.57 0.01 0.09 0.93 3.01 0.42 2.38

St is the Strouhal number, CD the mean drag coefficient, CLr:m:s: the r.m.s. value of the lift coefficient, and CLmax and CDmax are the

maximum values of the lift and drag coefficients, respectively. ðX
D
Þr:m:s: and ðX

D
Þ represent the r.m.s. and mean value of the in-line

oscillations while ðY
D
Þmax is the maximum value of the amplitude of transverse oscillations.
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At Re�75 a jump in the amplitude of the transverse oscillations of the cylinder is observed. This jump is hysteretic in

nature. The cylinder sustains this level of oscillations till Re�300, at which point another hysteretic jump to slightly

higher amplitude of oscillations is observed. The behavior of the in-line oscillations is quite similar except that the jump

in the amplitude at Re�300 is very large. The variation, with Re, of the amplitude of lift coefficient and the maximum

drag coefficient are shown in Figs. 12 and 13. Very large values of the lift coefficient, in excess of 2.5, are observed for

Re4300.
Fig. 14 shows the variation of the nondimensional shedding frequency, based on the time variation of lift coefficient,

with Re. Also shown in the figure is the data for a stationary cylinder from the present computations and from Norberg

(2003). The reduced natural frequency of the system (Fn ¼ 1=U�) is also marked on the plot. Very good match between

the experimental and present results, for a stationary cylinder, are seen for Re ¼ 100 and less. As expected, at Re ¼ 325

and 350 the present computations lead to slight overprediction of St. For Re4200, two-dimensional simulations are
known to overpredict the vortex-shedding frequency. For the vibrating cylinder, the vortex-shedding frequency assumes

a value quite close to Fn beyond Re�75. The hysteretic behavior at Re�75 and 300 are clearly observed from this

figure.
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5.3.3. A possible cause for the hysteretic jump at Re�75

The hysteresis in the first jump at Re�75 is, perhaps, a consequence of the hysteretic behavior with respect to U�.

Consider a study, similar to as was done for Re ¼ 100 in the previous section, for other values of Re. A behavior similar

to the one seen in Fig. 2 is expected. However, the hysteretic transition from the ‘‘initial’’ to ‘‘lower’’ branch is expected

to take place at different value(s) of U�. If all such curves, for various Re are plotted together for a particular value of

U�, a behavior such as shown in Fig. 10 can be expected.
5.3.4. Vortex-shedding modes

Fig. 15 shows the vorticity fields for various Re. At Re ¼ 70 the cylinder vibrates with very low amplitude and the

flow is very similar to the 2S mode of shedding that is associated with a stationary cylinder at the same Re. At Re ¼ 83,

two solutions are realized. The one with lower-amplitude vibrations (increasing Re) exhibits the 2S mode of shedding

while the case with higher-amplitude oscillations (decreasing Re) is associated with the C(2S) mode [as described by

Williamson & Roshko (1988)]. The C(2S) mode is very similar to the 2S mode except that vortices coalesce in far wake.

The cylinder continues to shed vortices in the C(2S) mode till Re�300.

Re ¼ 325 is associated with two distinct modes of vortex shedding. The 2S mode is observed for the increasing Re

branch. The solution corresponding to decreasing Re shows the P+S mode of vortex shedding. In this mode, in each

cycle of shedding, a single vortex and a pair of counter-rotating vortices are released from the cylinder. This mode of

shedding is also observed for higher Re (see Fig. 15 for Re ¼ 350 and 425). Meneghini and Bearman (1995) carried out

numerical simulations for the Re ¼ 200 flow with forced vibrations of the cylinder. They found that the P+S mode of

shedding exists for Re ¼ 200 flow when the amplitude of vibrations of the cylinder is larger than �0:6D. The 2S mode is
observed when the amplitude of vibrations is less than �0:6D. Interestingly, the present results show that the amplitude
of transverse vibrations with the 2S mode of shedding is �0:56D while it is �0:62D with the P+S mode of shedding.

Blackburn and Henderson (1996) also found from their simulations, for Re ¼ 140 flow with forced vibrations of the

cylinder, that the P+S mode of vortex shedding is observed for oscillation amplitude of 0:75D and higher. Williamson
and Govardhan have pointed out that although this mode of shedding is excited by forced vibrations, it has never been

observed earlier in free vibrations. This point certainly needs more investigation and further work is being done to

understand the mechanism of energy transfer between the fluid and the vibrating cylinder. Our observations are in line

with the work by Blackburn and Henderson (1999). They simulated two-dimensional flow past a cylinder with forced

cross-flow oscillations at Re ¼ 500. Various frequency ratios were simulated with oscillation amplitude of 0:25D. They
studied the mechanical energy transferred from the fluid to the oscillating cylinder during one cycle of its motion. Four

branches of the variation of the energy with frequency were identified. On one of the branches, corresponding to the

P+S mode of shedding, a positive transfer of energy from the flow to the cylinder was observed. This shows that free

vibrations with the P+S mode, in a two-dimensional setup, are possible.
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5.3.5. Competition/switching in modes of vortex shedding

As seen from the response of the cylinder in Figs. 10 and 11, there is a hysteretic jump in the oscillation amplitude at

Re�300. This is accompanied with a change in the mode of vortex shedding. Fig. 16 shows the time history of the lift

coefficient and instantaneous vorticity field at various times. Both, 2S and P+S modes of vortex shedding are observed

at different instants of time. For example the flow at t ¼ 625 corresponds to the 2S mode. At t ¼ 1875, the mode of

shedding is P+S while it is C(2S) at t ¼ 4125. This points to competition/switching between the various modes of

shedding.

Fig. 17 shows the time history of the lift coefficient and instantaneous vorticity field at various times for the Re ¼ 325

flow for the solution corresponding to the decreasing Re branch. As is the case with the Re ¼ 375 flow, competition/

switching between the P+S and 2S modes of vortex shedding can be observed here, as well. In addition, the flip-flop

between the two mirror images of the P+S mode of shedding is also seen. It is found, from the frequency spectra, that

the dominant frequencies in the time variation of the lift coefficient and cylinder response in the transverse direction are

very close. This implies synchronization/lock-in between the cylinder motion and the flow. This is also observed from

Fig. 18 which shows the close-up view of the two time histories. Also shown in the same figure, for comparison, are the

time histories for the Re ¼ 325 flow corresponding to the 2S mode of shedding for increasing Re. The time histories for

the latter appear to be more organized and periodic. It is, perhaps, for the first time that the P+S mode of vortex

shedding has been observed in free-vibrations. Computations with a more refined finite-element mesh produced same

results. Interestingly, it was also found that the free vibration computations for Re ¼ 325 initiated with the flow past a

stationary cylinder at the same Re lead to the solution corresponding to the high amplitude of oscillations.

To investigate the role of in-line oscillations in the mode competition at Re ¼ 325, a computation in which the

cylinder is restricted to cross-flow oscillations (no in-line oscillations) was carried out for the decreasing Re branch. In

this case the 2S mode of vortex shedding is not observed; only the P+S mode of vortex shedding is seen. The amplitude

of cross-flow oscillations in the two cases, with and without in-line oscillations, is quite comparable.

The power spectra of the time histories of the drag coefficient for the Re ¼ 325 flow for the increasing Re (2S mode of

shedding) and decreasing Re (P+S mode of shedding) were compared. For the case corresponding to the 2S mode of

shedding only one peak is observed; the drag oscillates at, approximately, twice the natural frequency of the oscillator.
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However, for the P+S mode of shedding there is an additional peak that corresponds to the natural frequency of the

oscillator. This might explain the significant increase in the in-line oscillation amplitude of the cylinder motion with the

P+S mode of shedding for these two-dimensional simulations.
6. Conclusions

Vortex induced vibrations of a cylinder, at low Re, are simulated numerically via a stabilized finite element method

applied to the incompressible flow equations in primitive variables. The effect of reduced velocity and Re have been

studied. To this extent, two sets of simulations have been carried out: (i) Re set to 100 and U� is varied, (ii)

computations at various Re for U� ¼ 4:92.
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For the first time, hysteretic jump from the initial- to low-amplitude branch, at lower end of the synchronization

range of reduced velocity, in the laminar vortex-shedding regime have been observed. A careful examination of the

details in the region of jump (4:4pU�p4:7) shows that there are two distinct loops of hysteresis. While the mode of
vortex shedding with low amplitude of vibrations of the cylinder is 2S, it is C(2S) when the oscillation amplitude is large.

It is found that the jump at the higher end of the synchronization range of reduced velocity is also hysteretic.

Computations with transverse only and in-line only oscillations confirm that this hysteresis is not a consequence of the

in-line oscillations. The maximum amplitude for transverse and in-line oscillations is achieved for U��4:75 and 8.25,
respectively. In the laminar vortex-shedding regime, the in-line oscillation amplitude is quite small compared to the

amplitude of transverse oscillations.

It is found that the effect of Re, for a vibrating cylinder, is quite significant. For Reo300, the vortex shedding takes
place in the 2S mode. At larger Re, the P+S mode also appears. This mode of shedding has been observed for the first

time for a freely vibrating cylinder. The change in mode of shedding is accompanied with a very large increase in the

amplitude of in-line oscillations. A slight increase in the amplitude of transverse oscillations is observed, as well. It is

known that the flow ceases to remain two-dimensional beyond Re�200. Therefore, it remains to be seen whether the

P+S mode of shedding can actually be observed in reality.
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